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Degenerate Perturbation Theory 

1.1 General 
When considering the CROSS EFFECT it is ne cessary to deal with degenerate 

energy levels and therefore degenerate perturbation theory.  The basic ideas are 
outlined below.  

1.2 Degenerate Perturbation Theory 
When two or more states  a  and b  have identical ene rgies then the energy 

denominator  
Εn

0 −Εm
0  

vanishes and the coefficient cm
n( )  and Εn

2( )  
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m !H N
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o # " m
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diverge . The topic of how to deal with these situations, which are relatively common, is 
degenerate perturbation theory and is considered here . 
 

1.2.1 Twofold degeneracy 
This is the simplest case to consider Ð two fold degeneracy, whic h yields  

H 0! 0
0 = E0! 0

0 H 0! b
0 = E0! b

0 ! a
0 ! b

0 = 0 

 
 The energies are identical, E0 , and the wavefunctions are normalized and 

orthogonal.  A linear combination  of ψ a
0  and ψ b

0 is an eigenfunction of the unperturbed 

Hamiltonian.  

ψ 0 =α ψα
0 + β ψ b

0 =α a + β b  

with energy E0 . 
 
 In many cases, a small perturbation will lift the degeneracy  as λ  goes 0 ! 1  
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λ  might be an electric , E0, or magnetic field, B0, whose strength tu nes !  to some new 
value. 
 As !  decreases the upper state reduces to one cho ice of a linear combination of 
a  or b  while the lower state evolves to an orthogonal linear combination.  

 

1.2.2 Time independent Schroedinger Equation 
We want to solve the TISE with H = H 0 + λ ′H  

 
H ! = E !  

and 

 E = EO + λE1 + λ 2E2 + i i i ψ =ψ O + λψ 1 + λ 2ψ 2 + i i i  

 
Inserting and collecting terms  

 
H 0! 0 + " #H ! 0 +H 0! 1( )+ i i i = E0! 0 + " E1! 0 +E0! 1( )+ i i i  

 
H 0! 0 = E0! 0  cancels leaving for the ! 1  terms . 

H 0! 1 + H1! 0 = E0! 1 + E1! 0  

 
Taking the inner pr oduct with ! "

0  

ψ a
0 H 0 ψ 1 + ψ a

0 ′H ψ 0 = E0 ψ a
0 ψ 1 + E1 ψ a

0 ψ 0  

 
Because H 0  is Hermitian  

H ψ a
0 ψ 1 = E0 ψ a

0 ψ 1  

 
Inserting the linear combination of states  

! a
0 "H #! a

0 + $ ! b
0 = E1 ! a

0 #! a
0 + $ ! b

0  

α ψ a
0 ′H ψ 0

0 + β ψ 0
0 ′H ψ b

0 =α E1  
Or using other notation  

αWaa + βWab =α E1      (1) 

where 

 
Wij = ψ i

0 ′H ψ j
0 ij = a, b, i i i( )  

 
Similarly, the inner  product with ψ b

0  yields  

αWba + βWbb = β E1

 

 

ψ b
0 ′H αψ a

0 + βψ b
0 = E1 ψ b

0 αψ 0
0 + βψ b

0  
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α ψ b
0 ′H ψ a

0 + β ψ b
0 ′H ψ b

0 = E1 ψ b
0 βψ b

0  

 
αWba + βWbb = β E1      (2) 

 
The Wij 's  are in principle known quantities , that is they are  matrix elements of H 1  with 

the  unperturbed wavefunctions ψ a
0  and ! b

0 . To obtain a useful form.  

 
1) Multiple (2 ) by Wab  and  

2)  use (1) to eliminate βWab  

 
λWba +Wbb = β E1

 

αWabWba + βWabWbb =Wab βE1( )  

αWabWba + βWab Wbb − E
1( ) = 0  

then substitute  
αWaa + βWab =αE

1

 
βWab =α E1 −Waa( )  

 
Assuming α ≠ 0  and some algebra yields  

α WabWba − E1 −Waa( ) E1 −Wbb( )⎡⎣ ⎤⎦ = 0  

 
and the quadratic  

E1( )2 − E1 Waa +Wbb( ) + WaaWbb −WabWba( ) = 0  

 
and some more algebra (see the last page of the notes)  

E±
1 = 1

2
Waa +Wbb ± Waa −Wbb( )2 + 4Wab

2⎡
⎣⎢

⎤
⎦⎥

 

 
which is the fundamental result of degenerate perturbation theory . 
 
The two roots correspond to the two perturbed energies.  
 
 For the c ase where α = 0→β = 1  then  

 
αWaa + βWab =αE

1

Wab = 0
 

and 
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E1 =Wbb  

which is part of the general formula above.  
 
And when α = 1, β = 0, Wba = 0 , we find  

E±
1 =

1
2

Wab +Wbb ± Waa ! Wbb( )"# $%

 E+
1 =Waa = ψ a

0 ′H ψ a
0 E−

1 =Wbb = ψ b
0 ′H ψ b

0  

So by choosing the correct ÒgoodÓ zero order (unperturbed) states then we can use 
nondegenerate perturbation theory. We can often do this using the following  theorem  
 
Theorem:  A= Hermitian operator that commutes with H 0  and ′H  
 ψα

0  and ψ b
0  are eigenfunctions of H 0 they are also eigenfunctions of A with values 

Aψ a
0 = µψ a

0 Aψ b
0 = µψ b

0 µ ≠ η  

then Wαb = 0  and hence ψα
0  and ψ b

o  are ÒgoodÓ states to use in perturbation theory.  

 Proof:  
Α, ′H[ ] = 0

 

ψ a
0 Α, ′H[ ]ψ b

0 = 0  

ψ a
0 Α, ′H ψ b

0 − ψ a
0 ′H ,Αψ b

0  

= Αψ a
0 ′H ψ b

0 − ψ a
0 ′H ηψ b

0  

= µ −η( ) ψ a
0 ′H ψ b

0 = µ −η( )Wab = 0  

Since µ ≠ η  then Wab  must vanish. 

 
• Bottom line Ñ  if you have a degenerate problemÉ  

1) find a Hermitian operator that commutes with H 0  and ′H  
2)  choose your unperturbed states that are eigenfunctions of H 0  and !  
3)  Use 1st  order perturbation theory  

 
If such an operator is not availa ble then resort to degenerate perturbation theory.  
 

1.2.3  Higher Order Degeneracy 
 Rewriting the results above in matrix form twofold degeneracy we obtain  

Waa Wab

Wba Wbb

α
β = E1 α

β  

E 1( )  is the characteristic eigenvalues of the W −matrix  and the eigenvectors  

ψ ± =
1
2
ψ a ±ψ b( )  are the expa nded eigenvectors.  
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For the case of ! " fold degeneracy we search for the eigenvalues of the ! " !  

matrix  

Wij = ψ i
0 ′H ψ j

0  

 Finding suitable wavefunctions from the unpe rturbed wavefunctions amounts to 
constricting a basis in the degenerate subspace that diagonalizes  

ω ! 
 
 Consider a set of orthonormal states ψ j

0  that are degen erate eigenfunctions of 

the un perturbed Hamiltonian.  

H! j
0 = Ej

0! j
0 ! i

0 ! j
0 = Sij  

 We now construct the linear combination.  

ψ 0 = α j
j=1

η

∑ ψ j
0  

It, too, is an eigenfunction of Ĥ , the  unperturbed Hamiltonian with the same 
eigenvalues: 

H 0ψ 0 = α j
j=1

n

∑ H 0ψ j
0 = E0 α j

j=1

n

∑ ψ j
0 = E0ψ 0  

 We want to solve the TISE for the perturbed Hamiltonian  
H = H 0 + λ ′H  

We do the usual and expand !  and ! in a power series  

E = E0 + λE1 + λ 2E2 + ... ψ =ψ 0 + λψ 1 + λ 2ψ 2 + ...  
 
 Inserting into Hψ = Eψ  and collecting terms in like powers of λ , we obtainÉ  

H 0 + ! "H( ) # 0 + ! # 1 + ! 2# 2 +...( ) = E0 + ! E1 + ! 2E2 + ...( ) $ # 0 + ! # b
1 + ! 2# 2 +...( )  

yielding  
 

H 0ψ 0 + λ H 0ψ 1 + ′H ψ 0( ) + ...E0ψ 0 + λ E0ψ 1 + E1ψ 0( ) + ... 

 
 The zeroth order terms cancel, to  first order we obtain  

H 0ψ 1 + ′H ψ 0 = E0ψ 1 + E1ψ 0  

 
 Inner product with ψ j

0  yields  

ψ j
0 H ψ 1 + ψ j

0 ′H ψ 0 = E0 ψ j
0 ψ 0  

 
 However when 

ψ j
0 H ψ 1 + H 0ψ j

0 ψ 1 = E0 ψ j
0 ψ 1  

 
 the first terms cancel leaving  
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! j
0 H 1! 0 = E1 ! j

0 ! 0  

 

 Now using 
 
ψ 0 = ∝

−1

η

∑ ψ 
0  and exploring the orthonormality of  ψ 

0{ }  

 

 
α 

=1

η

∑ ψ j
0 ′H ψ 

0 = E1 α 
=1

η

∑ ψ j
0 ψ 

0 = E1α j  

or defining  

 
Wj = ψ j

0 ′H ψ 
0  

we obtain  

 
Wjα 

=1

η

∑ = E1α   

 This is  the generalization from the 2 -fold to the η − fold  case. 

 It is the eigenvalue equation for the matrix W  (whose  j
th  element in the ! j

0{ }  

basis is  Wj . E
1  is the eigenvalue and the eigenvector (in the ψ j

0{ }  basis) is x j =α j  

 
 First order corrections to the energy are the eigenvalues of W . 
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αWba + βWbb = β E1

*Wab

αWabWba + βWabWba = βWabE
1

αWabWba + βWab Wbb − E
1( ) = 0 αWaa + βWab =αE

1 βWαb = E1 −Waa( )α

αWabWba −α E1 −Waa( ) E1 −Wbb( ) = 0

α ≠ 0

E1( )2 − E1 Waa +Wbb( ) + WaaWbb −WabWba( ) = 0

E1 =
Waa +Wbb( ) ± Waa +Wbb( )2 − 4 1( ) WaaWbb −WabWba( )⎡

⎣
⎤
⎦

2 − 4 1( ) WaaWbb −WabWba( )

1
2

= 1
2

Waa +Wbb( ) ± Waa
2 +Wbb

2 + 2WaaWbb( − 4WaaWbb + 4WabWba⎡⎣ ⎤⎦
1
2⎡

⎣
⎢

⎤

⎦
⎥

= 1
2

Waa +Wbb( ) ± Waa
2 − 2WaaWbb +W

2
bb( ) + 4 Wab( )2⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

= 1
2

Waa +Wbb( ) ± Waa −Wbb( )2 + 4 Wab

1
2⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

 


